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There is a general appreciation that a complete 
understanding of all toxicities associated with a new
drug candidate is crucial to its successful development
and marketing. Fortunately, genotoxicity can be
measured directly by long-standing and universally
accepted assays, such as the Ames test for bacterial
mutagenicity, chromosome aberration assays in
human lymphocytes or other mammalian cells in
culture, in vivo cytogenetics studies, and a host of
‘second tier’ assays which, although not always uni-
formly concordant, are applied in a weight-of-evidence
context. Of necessity, these regulatory agency-man-
dated studies [1,2] have typically been conducted
rather late in development after preclinical efficacy
has been established and in the same time frame as
the general toxicology studies. But every pharma-
ceutical company has stories of how otherwise safe
and effective molecules have been forced out of 
further development owing to unexpected geno-
toxicity seen during these regulatory studies. 

There is also a need to characterize the genotoxic
potential of metabolites, degradants, impurities and,

in the occupational health arena, process intermedi-
ates. Today nearly all large Pharma companies have
early gene-tox screening programs usually employing
a scaled down ‘mini’-Ames and an in vitro assessment
of chromosome damage in cultured mammalian
cells. Genotoxicity is thus revealed early on and
structure–activity-relationship (SAR) techniques can
usually guide subsequent chemical syntheses to
avoid genotoxicity. Most large Pharma companies
also use computational programs to aid in the pre-
diction of genotoxicity and a combination of in vitro
screening and in silico analysis is widely used.

Genotoxicity should be easier to predict than
other types of toxicity because genotoxicity typically
arises from direct chemical/DNA interaction depend-
ent to a large extent on electrophilicity. Specific organ
toxicities, on the other hand can arise by any of 
several pharmacological or chemical mechanisms
not necessarily related to or obvious from chemical
structure analysis. In fact, the advent of microarray
technologies has made it possible to establish spe-
cific organ toxicity gene expression signatures which

Ronald D. Snyder

Genetic and Molecular

Toxicology,

Schering-Plough Research

Institute,

Lafayette,

NJ 07848,

USA

e-mail:

ronald.snyder@spcorp.com

Mark D. Smith

Safety Assessment,

GlaxoSmithKline,

King of Prussia,

PA 19406,

USA

Computational prediction of
genotoxicity: room for improvement
Ronald D. Snyder and Mark D. Smith

Decades of mutagenesis and clastogenesis studies have yielded enough
structure–activity-relationship (SAR) information to make feasible the construction
of computational models for prediction of endpoints based on molecular structure
and reactivity. Although there is cause for optimism that these approaches might
someday reduce or eliminate the need for actual genotoxicity testing, we are in fact a
long way from this. We provide an overview of the state of the art of such approaches,
dissecting out how these models are suboptimal. It is clear that current programs still
have limited predictive capabilities. We propose that one of the major contributing
factors for the inherent lack of sensitivity (typically 50–60%) is inadequate coverage
of non-covalent DNA interactions. Suboptimal specificity can be partly attributed to
chemical space considerations with associated non-causal activity correlations.
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may someday allow prediction of organ toxicities with-
out the need for longer-term preclinical animal studies.

Unfortunately, even genotoxicity has proven to be sub-
stantially refractory to prediction based on two dimensional
structure analysis despite the existence of computational
programs whose ‘intelligence’ is based on very large num-
bers of compounds and attendant genotoxicity data.

This review will briefly describe the principal computa-
tional programs and their performance characteristics in
predicting genotoxicity. It is not our intention to describe
in detail the history, the evolution, or the chemico-biolog-
ical/statistical basis of such systems, as many reviews have
already covered this. Instead, we will discuss the inherent
strengths and weaknesses of these programs and prospects
for improvement.

The principal players and some newcomers
Two excellent reviews have been published [3,4] exam-
ining the most commonly used computational muta-
genicity programs and the interested reader is encouraged
to consult these and the respective program websites (see
text) for greater detail. The following general descriptions
are provided.

DEREK (Deductive Estimation of Risk from Existing
Knowledge)
Created by Lhasa Ltd (http://www.chem.leeds.ac.uk/
luk/derek/index.html), DEREK is a knowledge- and rule-
based expert system that makes semi-quantitative esti-
mations as to whether or not a DNA reactive (subdivided
as to general genotoxic, mutagenic, or chromosome dam-
aging) moiety is present on the input chemical structure.
An experienced user is able to determine if a flagged alert
is in the proper chemical context to be genotoxic relative
to the compound(s) upon which the DEREK rule was
based. The learning set for DEREK was created using both
bacterial mutagenicity and all other available genotoxicity
data. Query outputs define the structural alert recognized,
the type of genotoxicity (bacterial mutagenicity, in vitro
cytogenetics, etc.) associated with the alert, specific exam-
ples of genotoxic compounds sharing the alerting moiety,
detailed mechanistic comments relevant to the alert, and
literature references. Derek can be customized by the user.

MCASE (Multiple Computer Automated Structure Evaluation)
MCASE (http://www.multicase.com) dissociates each input
molecule into 2–10 atom fragments and statistically eval-
uates the strength of association of those fragments (bio-
phores), and similar fragments from its database, with an
associated mutagenicity score (a value based on the observed
mutagenic potency). It generates a quantitative prediction
of mutagenicity which is then further refined through 
taking into consideration physico-chemical properties as
well as the existence of potential ‘deactivating fragments’
or biophobes. The original MCASE model was based solely
on bacterial mutagenicity data derived from 2032 compounds

from the National Toxicology Program (NTP), the U.S.
Environmental Protection Agency (USEPA) Genetox pro-
grams, and 204 pharmaceuticals (the latter of which were
all negative in the Ames test). A more recent version is
based on a set of 3000 compounds and includes Drosophila
mutation data. About to be released is yet another version
created by the FDA in collaboration with MCASE in which
16 separate modules allow predictions of mutagenicity in
individual Salmonella strains in the presence and absence
of either rat or hamster S9 activating systems. MCASE can
be readily customized by the user.

TOPKAT (Toxicity Prediction by Komputer Assisted
Technology)
TOPKAT (http://www.accelrys.com/products/topkat/index.
html) uses ‘electro-topological’ descriptors rather than
chemical structures to predict mutagenic reactivity with
DNA and, as such, is an extension of classical quantita-
tive structure–activity relationship (QSAR) analysis. The
intelligence of TOPKAT was derived solely from bacterial
mutagenicity data. TOPKAT was initially designed by Health
Systems Inc. and is now marketed by Accelrys, San Diego,
CA, USA. The Ames prediction module consists of 1866
compounds divided into individual models based on
chemical class analogy. Unlike DEREK, TOPKAT provides
a measure of the similarity between a test molecule and
the chemical space covered by the program excluding
from further analysis any molecules deemed to have 
insufficient coverage. TOPKAT cannot be readily customized
by the user.

QSAR models
In addition to the above programs, numerous QSAR models
have been designed and evaluated [5–12]. QSAR models
use algorithms based on various types of chemical descrip-
tors such as chemical substructure, logP, electronics, geo-
metrical attributes, and surface area to yield a predictive
value. Most QSAR genotoxicity models predict and are
based on bacterial mutagenicity data, an exception being
that developed by Serra et al. [9] which predicts and is
based solely on chromosome aberration data. Remarkably,
this chromosome aberration QSAR model required only
three topological descriptors for prediction. At the pres-
ent time, only one QSAR model, CSGenotox (www.
ChemSilico.com), has been evaluated in side by side tri-
als with other computational programs against a common
tester set of molecules to establish comparative perform-
ance characteristics [7]. That study compared the predic-
tivity of three QSAR models to that of MCASE and DEREK
for 217 non-drugs and 30 drugs. Of the descriptors
found to be predictive, 40% were related to well-known
structural genotoxicity alerts. The results of that study
were interpreted as indicating that the QSAR approach
had better specificity, but used unsupervised ‘out of the
box’ calls for MCASE and DEREK for comparison which
biases the results. Nevertheless, QSAR approaches offer a
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different way of categorizing new chemical entities. Further
evaluation may prove QSAR modeling to be superior or at
least complementary to the non-QSAR models.

DNA docking model
Another approach under development is a 3-dimensional
DNA docking model for the identification of molecules
capable of non-covalent DNA interaction, ie. groove-bind-
ing, DNA intercalation or both [13–15]. This model eval-
uates the ability of a molecule to fill the space between
two adjacent DNA base pairs and calculates the strength
of that fit based on H-bonding and van der Waals con-
tacts. Initial studies have demonstrated the utility of this
model in predicting genotoxicity of non-covalent DNA
binding molecules [16,17]. Subsequent work has shown
that many non-structurally alerting clastogenic drugs, not
predicted by standard computational programs, may act
via DNA intercalation (manuscripts in preparation).

Consensus modeling
Basing genotoxicity predictions on the combined outputs
of multiple models – consensus modeling – generally 
improves the accuracy of prediction but this is at the 
expense of decreased chemical coverage. White et al. [18],
for example, reported that CASETOX, TOPKAT and
DEREK had specificities of 78 to 82% when used as single
programs. In combination with one or both additional
programs, the specificity increased to 92 to 100% (with
no substantive change in sensitivity) but the number of
molecules that could be assessed by multiple programs
(based on the criterion that both programs had to have

made the same call on a particular molecule) dropped by
60 to 80%. Consensus modeling from multi-QSAR modules
has also been reported to provide additional predictive
power when applied to generalized polycyclic aromatics [19]
or to thiophenes [20].

Correlating predictions
Accurate prediction of Ames mutagenicity is essential for
drug development because, except for drugs being devel-
oped for life-threatening diseases or conditions, a positive
Ames is usually the death knell for a molecule. But, there
is an equal need for early genotoxicity prediction of 
in vitro and in vivo cytogenetics, the other two compo-
nents of the regulatory testing battery. There is no reason
to believe that a positive computational prediction based
on Ames’ SAR, would not also pertain to other genetic
toxicology endpoints because all true genotoxicity is
based on the same capability for covalent DNA addition,
be it in bacteria, mammalian cells, in culture or in vivo.
Attesting to this is the considerable overlap between
Ames-positivity and positivity in other genotoxicity assays
among marketed pharmaceuticals: 20 of 23 (87%) Ames-
positives are also positive in other genotoxicity assays [21].
Considering only the major computational programs,
structure/genotoxicity data of anything other than Ames
results has been built only into DEREK, although new
modified versions of MCASE, at least, are being developed
as specific models for prediction of mouse lymphoma and
chromosomal aberration assays and the QSAR model of
Serra et al. [9] is based only on chromosome aberration
data. It will be interesting to see if these more broadly-
based models will be more predictive for either global or
specific genotoxicity endpoints.

Sensitivity
Lack of sensitivity (the measure of a program’s ability to
correctly identify true positives) is a problem if one 
relies heavily on computational analysis to advance a
compound to the candidate stage or in making worker
safety decisions. However, even in the absence of a com-
putational prediction of genotoxicity, most companies
would most probably evaluate the genotoxicity of any
molecule of interest, particularly if the molecule possessed
a structural component of concern. Lack of sensitivity
might therefore be more of an academic curiosity than a
drug development hurdle. Nevertheless, a more complete
understanding of the nature of false negatives is required
to improve computational models. As mentioned earlier,
direct comparison of models is difficult because for the
most part, models have not been tested side-by-side with
the same tester sets. 

Table 1 summarizes the sensitivity of the three most
commonly used programs when challenged with the drug
set from the Physician’s Desk Reference (PDR) [21,22].
Excluded from the test set were molecules with known
mechanism-based genotoxicity (e.g. nucleoside analogs,

REVIEWS

TABLE 1

Comparison of sensitivities of computational programs 

MCASE DEREK TOPKAT

Ames

Overall 13/27 (48%) 14/27 (52%) 10/23 (43%)

Structurally alerting  
(12)a

92% 67% 82% 

Non-alerting (15) 20% 27% 18% 

In vitro cytogenetics 

Overall 10/47 (21%) 15/47 (32%) 11/48 (23%)

Structurally alerting (20) 45% 60% 35% 

Non-alerting (28) 4% 11% 14% 

MLA 

Overall 7/23 (30%) 8/24 (33%) 3/24 (13%)

Structurally alerting (8) 75% 75% 25% 

Non-alerting (16) 6% 13% 6% 

In vivo cytogenetics

Overall 6/25 (24%) 10/30 (33%) 8/28 (29%)

Structurally alerting (11) 60% 73% 50% 

Non-alerting (19) 0% 11% 17% 
aNumber of drugs in parentheses. Data adapted with permission from [22]. 
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fluoroquinolones, etc.), as the genotoxicity of these mol-
ecules is not attributable to a specific molecular fragment
or moiety and is, therefore, not predictable by standard
computational analyses (see below). Inclusion of these
molecules would have the consequence of further reducing
sensitivity.

It is clear that all three programs have approximately
the same (poor) overall sensitivity for detecting Ames 
positives (43 to 52% of positives correctly identified). This
was also reported in a study of proprietary pharmaceuti-
cals in which 49/90 (54%) true Ames positives were missed
by DEREK and in which 44/63 (70%) of Ames positives were
missed by MCASE [3]. Similar poor sensitivity was reported
by White et al. [18] for all three programs challenged with
a tester set of over 500 proprietary pharmaceuticals.

It is also seen from Table 1 that the sensitivities in the
non-bacterial genotoxicity assays is even worse than for
Ames, for all three programs. An overwhelming majority
of correct calls for all assay types by all three programs was
made on drugs with obvious ‘structural alerts’ as origi-
nally defined by Ashby [23,24]. This is to be expected as
each computational system has these structural motifs
contained within their respective training sets. On the
other hand, the highest sensitivity value observed for
‘non-Ashby’ alerting PDR drugs was 27%. This indicates
that, for whatever reason, these programs were not ade-
quately trained to detect the non-alerting drugs, the ones
of greatest interest! From within the PDR test set at least
84 non-alerting genotoxic drugs were identified [22]. They
collectively constituted a troubling 56, 58, 67, and 63%
of all positive Ames, in vitro cytogenetics, mouse lym-
phoma and in vivo cytogenetics results, respectively.
Twelve of these molecules might have been missed owing
to their known requirement for metabolic activation; sev-
enteen appear to have been missed because they were clas-
sical intercalating agents, information on which is greatly
underrepresented in these models. Why the remaining 55
drugs were missed is unknown but recent studies suggest
that many structurally-diverse molecules are capable of
functional DNA intercalation even though they do not
have classical (fused ring, planar) intercalating structures
[16,17]. Because only a small number of classical and non-
classical intercalating structures are included in the data-
bases of these programs, it would seem likely that further
characterization of non-covalent DNA interaction and 
inclusion of this information into computational models

might substantially increase the sensitivity. The need to
generate more information relative to intercalating poten-
tial is important for better predictivity of bacterial frameshift
mutagenesis. But non-covalent DNA binding could be even
more important in the context of positive chromosome
aberration results because intercalating agents are well-
known topoisomerase inhibitors and, as such, generate
largely irreparable DNA double strand breaks [25].

The sensitivity of these computational models is some-
what better if one tests chemicals rather than drugs [26].
This is most probably related to the fact that because drugs
are underrepresented in these models, the chemical ‘space’
– or extent of chemical diversity represented by the mol-
ecules used to construct each program – is enriched with
non-pharmaceutical-type structures. The difficulties of
using programs based on a global non-congeneric set of
molecules have also been discussed in the QSAR context
[11]. The same is true of databases constructed from a set
of structurally-related proprietary molecules, which is
then challenged with additional structures within that
same chemical space. Thus, these programs are inherently
more accurate when testing structurally restricted rather
than global tester sets.

Specificity
Table 2 compares the three primary programs with respect
to their total performance characteristics when challenged
with PDR drugs. The MCASE and DEREK values used in
this table are derived using expert evaluation of the program
outputs, not ‘out of the box’ calls. Without user input, per-
formance characteristics are considerably poorer (unpub-
lished observations). Concordance, the overall percentage
of correct positive and negative calls, is often misleading
and is usually biased by the larger number of true negatives
in most tester sets. As shown in Table 2, high concordance
belies the very poor sensitivity of all of these programs.

Aside from the poor sensitivity, it is clear from Table 2
that specificities could also use some improvement.
Specificity is defined as the ratio of true negatives to the sum
of true negatives and false positives. Thus if there were 50
true negative predictions but 25 false positive predictions,
the specificity would be 67%, unacceptably low. The gen-
eration of false positives can result in the ‘throwing out’ of
useful drugs. This would probably not be an issue in a com-
binatorial chemistry program where a certain proportion of
molecules must be filtered out anyway to limit the number
of molecules that are taken forward to the next Discovery
step. However, if the computational analysis is done later
on when, say, 20 compounds are being rank ordered, dis-
carding false positives can be more problematic. Also, a false
positive genotoxicity prediction, even if tested directly by
bioassay and found to be ‘clean’, might require additional
testing or discussion with regulatory agencies. This would
be particularly true for molecules carrying structural alerts.

What causes this high number of false positive predic-
tions? Published proclamations as to the extremely poor
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TABLE 2

Summary of performance characteristics of computational programs
in the assessment of bacterial mutagenicity of marketed drugs 

Sensitivity Specificity Concordance 

MCASE 13/27 (48%) 307/330 (93%) 320/357 (90%)

DEREK 14/27 (52%) 260/346 (75%) 274/373 (74%)

TOPKAT 10/23 (43%) 267/316 (85%) 277/339 (82%)

Ratios are correct calls/total calls. Data adapted with permission from [22]. 
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specificities of computational programs generally refer to
‘out of the box’ calls and rarely take expert input into con-
sideration. As stated above, false positives could be
markedly reduced by including an expert opinion as to
whether the identified biophore is in a chemical context
consistent with it being DNA reactive. This determination
can usually be made by a chemist or toxicologist. But
there are other sources of false positive calls. An ongo-
ing exercise by the creators and developers of MCASE has
concluded that predictive value can be dependent on such
things as the number of molecules, the ratio of positive
to negative compounds, [27,28] and the nature of the
molecules, e.g. drugs versus, for example, pesticides, in
the learning set [29]. Furthermore, poor specificity could
also be due in part to the incorrect assignment of a frag-
ment as being responsible for the mutagenicity of a mol-
ecule that, in fact, has no true biophore. For example, a
mutagenic nucleoside would not carry an actual struc-
tural alert, its mutagenicity instead being due to inhibi-
tion of DNA polymerization. Correlative approaches such
as MCASE would nevertheless seek to define a fragment(s)
to ascribe to mutagenicity and such assignments would
be necessarily incorrect. Subsequent test molecules car-
rying this same fragment may be incorrectly identified as
positives. We removed non-alerting positive gene-tox
structures from the MCASE learning set and rechallenged
with the PDR database. Some improvement of specificity
(ie less false positives) did occur but it is clear that such
incorrect biophores account for only a small fraction of
the false positives seen with MCASE (Braunstein et al., pre-
sented at Annual Society of toxicology meeting, Baltimore,
MD, 2004).

Genotoxic potency
The PDR provides a unique opportunity to evaluate geno-
toxicity results derived from harmonized study design and
subjected to the same interpretative criteria. The database
is also inherently weakened, however, by the lack of 
information relating to the strength of the response and
the dose at which that genotoxic response was observed.
This is a feature unfortunately shared by many publicly
available toxicology database collections (Register of Toxic
Effects of Chemical Substances [RTECS], NIH collection,
etc). Recently, at least two independent initiatives have
tried to address this shortfall in suitable SAR data. The first
of these is VITIC, a database concept initially formed from
a Health and Environmental Science Institute (HESI) 
initiative now under development with Lhasa in which
publicly available toxicology data are presented in a data-
base format with searchable chemistry and links to the

original biological assay data. The second, DSSTox, is a
database concept championed by Ann Richard of the
USEPA, in which data are shared as SDF files in a regular
ASCII format [30].

It is hoped that this potency data will aid in developing
risk-estimation paradigms. Most of these genotoxic
responses are likely to be very weak and to occur at con-
centrations far beyond those targeted in the clinic. In
truth, these positive responses, although almost certainly
genuine, probably carry minimal risk to the patient popu-
lation and a better means of assessing the actual risk asso-
ciated with these drug exposures would be highly desirable.
It is instructive in this regard that in the PDR marketed drug
dataset, of 50 genotoxic drugs with two-year bioassay 
results, only 26 (52%) were carcinogenic in at least one
species. Of 151 non-genotoxic drugs, 51 (34%) tested 
positive for carcinogenicity [21]. This latter observation
is explained by the fact that much carcinogenicity arises
via other than genotoxic mechanisms. The former obser-
vation suggests that ‘weak’ genotoxicity does not necessar-
ily translate into carcinogenicity. This is most probably 
because of exposure considerations rather than an ‘incor-
rect’ genotoxicity result but this has not been rigorously
evaluated. In the only such study reported, a clear linear
relationship was observed between in vivo genotoxicity
potency and carcinogenic dose defined in two-year bioas-
says of 50 molecules (only 5 of which were drugs) [31].
It might be further enlightening to compare ‘weak’ versus
‘strong’ in vitro genotoxins with respect to drug plasma
levels and carcinogenicity outcome in the two-year rodent
bioassay. Such studies would be helpful in determining if
rational risk assessment could be based on potency (DNA
reactivity) and clinical plasma drug concentration.

Conclusions
It is without question that the currently available in silico
approaches to genotoxicity prediction add value to the
drug development process. However, it is equally appar-
ent that the available tools fall short of the desired degrees
of both sensitivity and specificity. Although marked 
improvements in concordance can be made via expert 
interpretation of the ‘out of the box’ calls, it is clear that
each computational model still requires extensive modi-
fication before the ultimate goal of replacing biological
assays can be attained. It is proposed that one area in
which significant improvements can be made is in the
coverage of non-bacterial genotoxic responses. In partic-
ular, inclusion of specific genotoxicity data pertinent to
non-covalent DNA interactions should lead to a marked
increase in predictive value.
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